

TU/e technische universiteit eindhoven TU/e universiteit eindhoven

Daring Autonomous Robots Eindhoven

Bart Janssen / Koen Willems / Martijn Hamers / Frank van Heesch Heico Sandee / Mark Nievelstein / Ward van Vlimmeren

The Netherlands

Contest

Goal: Build one or two autonomous robots that can lay down skittles on the opposite side of a playing field within one and a half minute. Two teams start simultaneously and the winning team is the team that has thrown down the most skittles . The robots may also upright the skittles that are laid down by the opponent team reducing their score.

Team members have previously participated at:

- Dutch Createch (2000) 1st place
- 2nd place - Eurbot (2001)
- Dutch Robotwars (2002) Semi-finals

Deployable side arm to take along the ball while passing the bridge

Flexible rotating arm to throw down skittles.

Ball canon to shoot down skittles from a distance (2x 120 W Canon motors)

Skittle pick up mechanism to pick up laying skittles

Laser skittle detection to avoid collisions with standing skittles

Specifications

- * High performance drive units 180W
- * Power supply:
 - 2.0 Ah 8.4 Volt (for the driving units) 0.9 Ah 6.2 Volt (for the electronics)
- * Custom Dual ATMega32 processor board
- * Beacon detection system (IR)
- * The ability to select strategies prior to start
- * 2 x 16 character display for feedback
- * In-system programmability from the outside
- * Dimensions + weight:

LxWxH: 180 x 120 x 160 3.5 kg LxWxH: 230 x 340 x 400 13 kg

Controller

High speed manouvering requires complex motion control and makes the use of intelligent sensors such as cameras impractical. Therefore, a manouvering system has been developed that only requires data from two rotary encoders.

A novel MIMO-controller has been implemented in software on an ATMega32, together with a high level XY-trajectory controller. The MIMO-controller allows optimal tuning of speed, acceleration and precision, while the XY-trajectory allows for high level design of trajectories and strategies.

The design and development process of the controller has been examplory for hardware and software co-design, taking mechanical concepts, hardware architectures and software design choices into account from the

Eurobot

Eurobot is a yearly international competition for autonomous robots. The set-up of the contest is different every year, but there are some constants:

- * All robots need to be completely autonomous, so no radio control; robots need to have their own "intelligence" aboard.
- * The games always take place on a "table" of approximately 2 x 3 m.
- * There are always two teams simultaneously on the table to play a match.
- * The "robot" of each team usually consists of multiple robots.

It takes a lot of mechanical, electrical and software engineering know-how to realize all these things and moreover, to make them all work together. Therefore, it is a typical example of a multidisciplinary project.